
ЗЕМЯ
Галактиката



Слънчевата система е група астрономически обекти, включваща Слънцето и всички обекти на орбита около него – астероиди, комети, планети, планети-джуджета, спътници, междупланетарен прах и газ. Всички те са образувани при разпадането на молекулярен облак преди около 4,6 млрд. години.
СЛЪНЧЕВАТА СИСТЕМА
Галактика (на старогръцки: Γαλαξίας — Млечен път) е гравитационно-свързана система от звезди, междузвезден газ и прах, плазма и невидима тъмна материя. Всички обекти в състава на галактиката участват в движението около общия център на масата. В състава на галактиките влизат и различни видове звездни купове и мъглявини, като повечето от звездите в галактиките са част от система от две или повече звезди.
ГАЛАКТИКАТА
Земята е третата планета в Слънчевата система. Тя е най-голямата от земеподобните планети в тази система и единствената, на която според съвременните научни схващания има живот. Земята е формирана преди около 4,54 милиарда[2][3][4][5] години и скоро след това придобива единствения си естествен спътник – Луната. От всички животински видове, които са се развили на Земята,
Галактика (на старогръцки: Γαλαξίας — Млечен път) е гравитационно-свързана система от звезди, междузвезден газ и прах, плазма и невидима тъмна материя. Всички обекти в състава на галактиката участват в движението около общия център на масата. В състава на галактиките влизат и различни видове звездни купове и мъглявини, като повечето от звездите в галактиките са част от система от две или повече звезди.
Типичните галактики съдържат от един милион до хиляда милиарда звезди, гравитиращи около общ гравитационен център. Въпреки, че все още не е добре изучена и разбрана, се предполага, че тъмната материя съставлява около 90% от масата на повечето галактики. Последните изследвания и наблюдения дават основание да се счита, че масивни черни дупки съществуват в центъра на повечето, ако не на всички галактики.
Галактиките са далечни обекти, като разстоянието до най-близките от тях е прието да се измерва в мегапарсеки, а до по-отдалечените в единици, свързани с червеното отместване. C невъоръжено око е възможно да се различат само 3 галактики (освен нашия Млечен път): мъглявината Андромеда, Големият и малкият Магеланови облаци.
До началото на 1990-те класифицираните галактики, в които е възможно да се видят отделни звезди, наброяват не повече от 30. След изнасянето на космическия телескоп „Хъбъл“ и въвеждането в строй на 10-метрови наземни телескопи броят на галактиките, в които могат да се различат отделни звезди, рязко нараства.
Съдържание
Думата γαλαξίας идва от гръцки език и означава млечен кръгов път поради изгледа си на небето. В гръцката митология, Зевс поставя сина си Херкулес, роден от смъртна жена, на гърдите на Хера, докато тя е заспала, за да може да засуче от нейното мляко и стане безсмъртен. Но Хера се събужда и осъзнава, че кърми непознато дете. Тя го отблъсква и струя от млякото опръсква нощното небе, като създава сиянието, което днес е познато като Млечен път.[1]
МЛЕЧНИЯТ ПЪТ
Още древногръцкият философ Демокрит (450-370 г. пр.н.е.) прави предположението, че ярката ивица на нощното небе, известна като Млечен път, може да се състои от отдалечени звезди.[2] Аристотел (384–322 г. пр.н.е.) обаче смята, че Млечният път се дължи на „възпламеняването на избухливите изпарения от някои звезди, които са големи, многобройни и близки една до друго“ и че това възпламеняване „става в горната част на атмосферата, в областта на света, свързана с небесните движения“.[3] Неоплатоникът Олимпиодор Младши (ок. 495-570) критикува този възглед с аргумента, че ако Млечният път е разположен в подлунното пространство, той трябва да е различен в различни моменти и при наблюдение от различни места, както и че той трябва да има паралакс. Според него Млечният път е небесен обект, както звездите. Разсъжденията на Олимпиодор по-късно оказват значително влияние върху астрономите в Ислямския свят.[4]
Иракският астроном Ибн ал-Хайтам (965-1037) прави първия опит за наблюдение и измерване на паралакса на Млечния път,[5] и по този начин установява, че „тъй като Млечният път няма паралакс, той е много отдалечен от Земята и не е част от атмосферата“.[6] Хорезмийският астроном Ал-Бируни (973-1048) прави предположението, че Млечният път е „сбор от безчислени фрагменти, подобни на мъглявинните звезди“.[7][8] Андалусецът Ибн Баджа (1095-1138) смята, че Млечният път е съставен от множество звезди, които почти се опират една в друга и изглеждат свързани, заради ефекта на пречупването на светлината в подлунната материя.[3][4] В подкрепа на този възглед той сочи своите наблюдения на съединението на Юпитер и Марс, при които е забелязал подобно сливане на образа на близкоразположени обекти.[3] Според сириеца Ибн Кайим ал-Джаузия (1292-1350) Млечният път е „множество малки звезди, събрани заедно в сферата на неподвижните звезди“.[9]
Същинското доказателство, че Млечният път се състои от много звезди, идва през 1610 година, когато италианецът Галилео Галилей използва телескоп за неговото наблюдение.[10] През 1750 година английският астроном Томас Райт в своята „Оригинална теория или нова хипотеза за Вселената“ („An original theory or new hypothesis of the Universe“) стига до вярното разсъждение, че галактиката може би е въртящо се тяло, съставено от огромен брой звезди, задържани заедно от гравитационните сили, подобно на Слънчевата система, но в много по-голям мащаб. Полученият диск от звезди се вижда като ивица на небето от нашата гледна точка във вътрешността на диска.[11] В един трактат от 1755 година германецът Имануел Кант доразработва идеята на Райт за структурата на Млечния път.
Формата на Млечния път, според преброяването на звезди на Уилям Хершел от 1785 година - предполага се, че Слънчевата система е близо до центъра
Първият опит да се опише формата на Млечния път и разположението на Слънцето в него е направен от германеца Уилям Хершел, който внимателно преброява броя на звездите в различни участъци от небето и съставя схема с формата на галактиката и Слънчевата система близо до нейния център.[12] Използвайки по-точни измервания, през 1920 година нидерландският астроном Якобус Каптейн достига до представата за малка елиптична галактика с диаметър около 15 килопарсека и Слънцето близо до нейния център. Американецът Харлоу Шапли прилага различен метод, основаващ се на каталогизирането на кълбовидните звездни купове и стига до напълно различен резултат - плосък диск с диаметър приблизително 70 килопарсека и Слънцето отдалечено от центъра.[11] И двете изследвания не взимат под внимание абсорбцията на светлината от междузвездния прах в галактическата равнина. До съвременната представа за Млечния път се стига след като през 1930 година швейцарско-американският астроном Робърт Джулиъс Тръмплър оценява количествено този ефект при изследванията си на разсеяните звездни купове.[13]
Разграничаване от останалите мъглявини
Фотография от 1899 година на „Голямата мъглявина Андромеда“, известна днес като галактиката Андромеда
През 10 век персийският астроном Ас-Суфи (903-986) прави най-ранното известно наблюдение на галактиката Андромеда, описвайки я като „малък облак“.[14] Той идентифицира и Големия Магеланов облак, видим от Йемен, но не и от Исфахан, който става известен на европейците едва след експедицията на Фернандо Магелан през 16 век.[15][16] Това се първите галактики, освен Млечния път, наблюдавани от Земята.
През 1750 година Томас Райт допуска, че някои от мъглявините, видими в нощното небе, може би не са част от Млечния път.[11][17] През 1755 година Имануил Кант използва за тези отдалечени мъглявини наименованието „островни вселени“.
Към края на 18 век френският астроном Шарл Месие съставя каталог от 109 ярки мъглявини, последван от много по-големия каталог с 5 хиляди мъглявини на Уилям Хершел.[11] През 1845 година англичанинът Уилям Парсънс конструира нов телескоп и успява да разграничи елиптичните от спиралните мъглявини. Той забелязва и индивидуални точкови източници на светлина във вътрешността на мъглявините, с което подкрепя по-ранната хипотеза на Кант.[18]
През 1912 година американецът Весто Слайфър прави спектрографски изследвания на най-ярките спирални мъглявини, за да определи дали те са съставени от вещества, характерни за планетарните системи. Той установява, че спиралните мъглявини имат голямо червено отместване, което показва, че те се отдалечават от Земята със скорост, по-голяма от втора космическа скорост на Млечния път. Това означава, че те не са гравитационно свързани с Млечния път и вероятно не са част от него.[19][20] През 1917 година американецът Хебър Къртис наблюдава появата на нова звезда в Голямата мъглявина Андромеда. Преглеждайки фотографския архив, той намира още 11 нови, които средно са значително по-бледи от наблюдаваните в Млечния път. Така той оценява разстоянието до мъглявината на 150 хиляди парсека и става привърженик на хипотезата за островните вселени, според която спиралните мъглявини са самостоятелни галактики.[21]
През 1920 година се провежда т.нар. „Велик дебат“ между Харлоу Шапли и Хебър Къртис за характера на Млечния път, спиралните мъглявини и размерите на Вселената. В подкрепа на твърдението си, че Голямата мъглявина Андромеда е външна галактика, Къртис отбелязва видимите тъмни ивици, наподобяващи прашните облаци в Млечния път, както и значителното червено отместване.[22] До окончателно решение на въпроса се стига в началото на 20-те години. През 1922 година естонецът Ернст Епик прави изчисление на разстоянието, което подкрепя хипотезата, че мъглявината Андромеда наистина е отдалечен извънгалактически обект.[23] През 1929 година, използвайки новият стоинчов телескоп в обсерваторията Маунт Уилсън, американецът Едуин Хъбъл успява да определи, че външните части на някои спирални мъглявини са сбор от индивидуални звезди. Той идентифицира няколко цефеиди, чрез които оценява разстоянието до мъглявините и установява, че те са твърде отдалечени, за да бъдат част от Млечния път.[24] През 1936 година Хъбъл създава използвана и днес система за класифициране на галактики - камертонната диаграма на Хъбъл.[25]
Съвременни изследвания
Този раздел е празен или е мъниче. Можете да помогнете на Уикипедия като го разширите.
Днес се смята, че във видимата вселена съществуват 175 милиарда галактики. Подобрена технология (радио, инфрачервени, рентгенови телескопи) разкрива неща, невидими за човека, които откриват нови галактики.
Видове галактики
Видове галактики по класификацията на Хъбъл. E означава елиптична; S е спирална;
Галактиките се отличават с огромно разнообразие. Различават се различни типове галактики в зависимост от формата и структурата им. Учените са дали имена на над 200 000 галактики. Четирите основни вида са елиптична, спирална, неправилна и пръстеновидна, макар че съществуват и други видове.
-
Елиптични галактики - това са най-старите, с форма на кръг или елипса галактики, съдържащи трилиони звезди. Те могат да имат огромни размери и да са изключително ярки (гиганти) или да са малки и бледи (джуджета). Всяка елиптична галактика се обозначава с число от 0 до 7, което съответства на формата на галактиката. От тип 0 са елиптични галактики с правилна кръгла форма, а от тип 7 са такива със силно изразена елиптична форма. В елиптичните галактики не се формират нови звезди и в тях има много малко звезден прах.[26]
-
Спирални галактики - тези галактики имат два основни компонента:
-
ядро, населено от стари звезди, придаващи му червен цвят
-
система от спирални ръкави, лежащи в една равнина, поне два, и населени с млади звезди, придаващи на ръкавите характерен син цвят.
Характеристичният ъгъл е ъгълът между допирателната към най-изпъкналата част на спиралния ръкав и правата, свързваща тази най-изпъкнала точка с центъра на ядрото. Той варира между 0° и 90°. Когато ъгълът е 90°, спиралата се изражда в окръжност, а колкото по-малък е този ъгъл, толкова по-разгънат е спиралният ръкав.
-
Неправилни галактики - тези галактики нямат определена форма. Възможно е да са образувани от останките на галактики, които са се сблъскали. Те не могат да се отнесат към елиптичните или спиралните галактики и затова се наричат неправилни. Всяка от тях е уникална и неповторима по външността си. Тези галактики са изключително ярки поради наличието на много звезден прах в тях. По същата причини в неправилните галактики се образуват много нови звезди.[27]
-
Пръстеновидни галактики - тези галактики са с формата на пръстен. Пръстенът се състои от еднородни, относително млади сини звезди, които са изключително светли. В центъра си светят в синьо. Астрономите предполагат, че пръстеновидни галактики се образуват, когато малка галактика премине през центъра на голяма галактика. Понеже галактиките съдържат голямо количество „празнина“ това „сблъскване“ рядко води до реално сблъскване на звезди. Гравитационно разцепване обаче може да доведе до вълна от звездна формация, която да премине през по-голямата галактика.
ГАЛАКТИКИТЕ
Форма
Формата на Земята се нарича геоид. Земята е огромно скално кълбо, което се върти в пространството около оста си, но това кълбо не е правилно, тъй като Земята е сплескана откъм полюсите и повърхността ѝ е релефна. Земята е най-голямата от четирите слънчеви планети от земен тип по отношение на размер и маса. От тези четири планети (Меркурий, Венера, Земята и Марс), Земята има най-висока плътност, най-висока гравитация по повърхността, най-силно магнитно поле, и най-бързо въртене. Тя е единствената планета с активни тектонични плочи.
Въртенето на планетата създава екваториалната изпъкналост, затова диаметърът на екватора е с 43 km по-голям от този на полюсите.[8] Средният диаметър на планетата е около 12 742 km, което е около 40 000 km/π, като метърът като мерна единица първоначално е дефиниран като 1/10 000 000 от разстоянието от екватора до Северния полюс през Париж, Франция. Най-големите точки с отклонения на повърхността на Земята са връх Еверест (8848 m над морското равнище) и Марианската падина (11 022 m под морското равнище). Поради издуването на Земята към екватора, най-отдалечената от центъра на Земята точка е всъщност връх Чимборасо в Еквадор (6384,4 km).
Структура
Взета като цяло, Земята по маса се състои от:
желязо:32,4%
кислород:28,2%
силиций:17,2%
магнезий:15,9%
никел:1,6%
калций:1,6%
алуминий:1,5%
сяра:0,70%
натрий:0,25%
титан:0,071%
калий:0,019%
други елементи: 3,53 %
Вижте още: Земно ускорение.
Вътрешност
Основна статия: Вътрешен строеж на Земята
Във вътрешността на Земята температурата достига до 5270 K. Топлината във вътрешността на планетата е била отделена при първоначалното натрупване на материал при формирането ѝ. (вижте Гравитационна свързваща енергия) След това допълнителна топлина се отделя чрез радиоактивното разпадане на елементи като уран, торий и калий. Топлината от вътрешността на Земята, която достига до повърхността ѝ, е едва 1/20 000 от енергията, получена от Слънцето.
Кората е отделена от мантията от границата на Мохоровичич; дебелината на кората варира от 6 km под океаните, до 30–50 km под континентите.[9]
Слоевете, изграждащи Земята в дълбочина, са следните[10][11]:
Дълбочина,
kmСлойПлътност,
g/cm³
0–60Литосфера (варира между 5 и 200 km)—
0–35... Земна кора (варира между 5 и 70 km)2,2–2,9
35–60... Горна част на мантията3,4–4,4
35–2890Мантия3,4–5,6
100–700... Астеносфера—
2890–5100Външно ядро9,9–12,2
5100–6378Вътрешно ядро12,8–13,1
Ядро
Средната плътност на Земята е 5515 kg/m³, което я прави най-плътната планета в Слънчевата система. Плътността на повърхностния материал е около 3000 kg/m³, което сочи, че вътрешността е богата на тежки елементи. Непосредствено след формирането си преди около 4,54 млрд. години Земята е била почти изцяло разтопена, и в резултат на това под действието на гравитацията тежките елементи са потънали към центъра, докато по-леките са „изплували“ на повърхността. (Виж планетна диференциация). В резултат на това ядрото се състои почти изцяло от желязо (80%), никел и силиций. Други тежки елементи като олово и уран са или твърде редки, или имат тенденцията да се свързват химически с леки елементи и по този начин да останат в кората.
Ядрото е разделено на две части – твърдо вътрешно ядро с радиус около 1250 km и течно външно ядро, което обхваща вътрешното и има радиус около 3500 km. Смята се, че вътрешното ядро е твърдо заради огромното налягане, под което се намира. Някои учени считат, че то може би представлява един гигантски железен кристал. Външното ядро се състои от течно желязо и течен никел с примеси от леки елементи. Смята се, че конвекцията във външното ядро заедно с ефекта на Кориолис пораждат магнитното поле на Земята чрез процес, известен като теория на динамото. Вътрешното ядро е твърде горещо, за да задържа постоянно магнитно поле (Виж Температура на Кюри), но вероятно стабилизира магнитното поле на външното ядро.
По последни данни вътрешното ядро на Земята се върти малко по-бързо от останалата част на планетата – с около 2° за година.[12]
Разрез на Земята от ядрото до екзосферата. Пропорциите не са действителни
Мантия
Основна статия: Земна мантия
Земната мантия достига до 2890 km дълбочина, което я прави най-дебелият слой в структурата на планетата. Налягането в най-дълбоките ѝ части е около 1,4 милиона атмосфери (140 GPa). Тя се състои главно от силикатни скали, относително богати на елементи като желязо и магнезий, в сравнение със земната кора. Макар че мантията е твърда, високите температури в нея правят силикатите достатъчно деформируеми, за да пълзят в рамките на продължителни периоди от време. Конвекцията в мантията се проявява на повърхността чрез движенията на тектоничните плочи.
Температурата на топене и вискозитетът на веществата зависят от налягането, на което са подложени. Тъй като налягането в мантията нараства в дълбочина, по-ниските части пълзят по-лесно, от по-горните пластове, като за това принос имат и разликите по дълбочина в химичния състав. Вискозитетът на мантията варира между 1021 и 1024 Pa.s, в зависимост от дълбочината.
Кора
Основна статия: Земна кора
Кората е дебела от 6 до 80 km. Най-тънките ѝ части са океанска кора, която се състои от гъсти желязно-магнезиеви силикати. Континенталната кора е по-дебела, по-лека е от океанската и е съставена от натриеви, калиеви и алуминиеви силикати. Границата между кората и мантията се проявява като рязка промяна на скоростта на разпространението на сеизмичните вълни – ефект, известен под името граница на Мохоровичич. Смята се, че най-общо причината за ефекта е промяната на химичния състав на скалите.
Материал от вътрешността на Земята постоянно изригва на повърхността посредством вулкани и разломи по дъното на океаните, като става част от кората. По-голямата ѝ част е по-млада от 100 млн. години, но най-старите ѝ части са на 4,4 млрд. години.[13]
Биосфера
Основна статия: Биосфера
Вътрешна структура на Земята.
Земята е единственото място, където със сигурност се знае, че има живот. Живите организми на Земята образуват биосферата, за която се счита, че е започнала да съществува със зараждането на първите организми преди около 3,5 млрд. години.
Биосферата е разделена на биоми (екосистеми), съставени от сродни растения и животни. Сухоземните биоми са разграничени един от друг предимно по географска ширина. Биомите на Арктика и Антарктика като цяло са бедни на растения и животни, докато най-богатите биоми са тези, разположени близо до екватора.[14]
Атмосфера
Основна статия: Земна атмосфера
Земята има сравнително гъста атмосфера, съставена от 78% азот, 21% кислород, 1% аргон и примеси от други газове като например въглероден диоксид и водна пара. Атмосферата играе ролята на топлинен буфер между Земята и Слънцето. Газовото съдържание на атмосферата е нестабилно и се поддържа от биосферата. Изобилието на молекулен кислород се поддържа от растенията, които използват слънчевата енергия. Без тях цялото количество кислород с времето би реагирало с елементите на повърхността. Наличието на свободен кислород в атмосферата е доказателство за протичането на жизнени процеси.
Височината, на която се намират атмосферните слоеве тропосфера, стратосфера, мезосфера, термосфера и екзосфера, варира в зависимост от географската ширина и от сезоните. Общата маса на атмосферата е около 5,1×1018 kg или около 0,9 милионни части от общата маса на Земята.
Хидросфера
Основна статия: Хидросфера
Карта на Земята, съставена от множество сателитни снимки
Земята е единствената планета в Слънчевата система, на която има вода в течно агрегатно състояние. Тя покрива 71% от повърхността на Земята (97,5% от водата е солена и 2,5% – сладководна).[15] Около 67,8% от прясната вода се намира във формата на лед в ледниците.[16] На земната повърхност в епохата, която живеем сега, са обособени четири океана и седем континента. Земната орбита, вулканичната дейност, гравитация, парников ефект, магнитно поле и богата на кислород атмосфера заедно създават подходящи условия за съществуването на вода в три агрегатни състояния на земната повърхност.
Земята се намира на такова разстояние от Слънцето, че при отсъствието на естествен парников ефект (създаван главно от водни пари и въглероден диоксид), температурата на повърхността на планетата би била под 0 °C и всичката вода би замръзнала. Палеонтологични доказателства сочат, че преди милиарди години е имало период, в който естественият парников ефект на Земята е бил нарушен и океаните са били напълно замръзнали за период от 10 до 100 млн. години.
На други планети, като Венера например, водните пари в атмосферата са разрушени от слънчевата ултравиолетова радиация, поради което водородът е постоянно йонизиран и отнасян в междупланетното пространство от слънчевия вятър. Този ефект е бавен, но необратим, и с негова помощ учените обясняват липсата на вода на Венера. При отсъствието на водород кислородът реагира с повърхностния материал на планетата.
Високо в земната стратосфера тънкият слой озон поглъща почти изцяло ултравиолетовата радиация, идваща от Слънцето, като по този начин значително намалява йонизиращия ефект на радиацията върху водните пари. Озонът може да бъде получен само при наличието на свободен кислород в атмосферата и следователно е зависим от биосферата. Магнитното поле на Земята също помага, като блокира голяма част от слънчевия вятър (Виж йоносфера).
Вулканичните изригвания допринасят за освобождаването на допълнителни количества водна пара и въглероден диоксид в атмосферата.[17] Земната тектоника позволява водата и въглеродният диоксид в атмосферата да се рециклират обратно в мантията под формата на скали като варовик. Според съвременни изчисления цялото количество вода, което се съдържа в мантията, е около 10 пъти по-голямо от водата в световните океани. Общата маса на хидросферата (вода на повърхността на Земята) се изчислява на 1,4×1021 kg или 0,023% от общата маса на Земята.
Магнитно поле
Основна статия: Земно магнитно поле
Земното магнитно поле е с приблизителна форма на дипол.
Земното магнитно поле има приблизителна форма на магнитен дипол, като магнитните полюси приблизително се намират до географските полюси на планетата. Според магнитната теория полето се създава от външната част на разтопеното ядро, където топлината създава движение на веществата в ядрото и се генерират електрични потоци. От това се създава магнитното поле на Земята. Тези движения в ядрото са хаотични и периодично се подреждат. Това поражда обръщане на земното магнитно поле през неравни интервали от време, понякога от няколко пъти на милион години. Последното обръщане на полюсите на магнитното поле се е случило преди около 700 000 години.[18][19]
Полето създава магнитосфера, която отклонява частиците на слънчевия вятър. Сблъсъкът между магнитното поле и слънчевия вятър формира радиационния пояс на Ван Алън. Когато плазма навлезе в земната атмосфера, над поясите се образува полярното сияние.[20]
Земята в Слънчевата система
Изглед на Земята от лунна орбита
На Земята са необходими 23 часа, 56 минути и 4,09 секунди (или един звезден ден), за да извърши едно пълно завъртане около собствената си ос, която минава през Северния и Южния полюс. Наблюдавани от повърхността на Земята, видимата позиция на небесните тела (без метеорите и изкуствените спътници) се премества с 15° на запад всеки час или приблизително с един видим диаметър на Слънцето или Луната на всеки две минути.
Земната орбита е елиптична с ексцентрицитет 0,016710219 и голяма полуос 149 597 887,5 km. Средната скорост на движение около Слънцето е 29,765 km/s, като варира между 30,27 km/s (в перигея) до 29,27 km/s (в апогея).[21] С тази скорост тя изминава разстояние, равно на един свой диаметър, за приблизително 7 минути. Една пълна обиколка земята извършва за 365,2564 дни (една слънчева година). Видимата позиция на Слънцето спрямо звездите се премества приблизително с 1° на изток за един ден.
Земята прави една обиколка около оста си за 0,447 km/s (~1600 km/h), измерено на екватора. С приближаването към полюсите скоростта респективно намалява до нула.
Ако условно разделим Слънчевата система на „горна“ и „долна“ част, от които съответно са видими земният Северен или Южен полюс, и следим движението на Земята по нейната орбита „отгоре“, то движението на Земята (и всички останали планети, както и въртенето на всички планети, включително Слънцето, но без Венера) е по посока обратна на часовниковата стрелка.
Плоскостите, определени от орбитата на Земята около Слънцето и нейното въртене около оста си, не са успоредни, а се пресичат под ъгъл от 23,5°. Този факт е главната причина за наличието на сезони, тъй като Северното и Южното полукълбо получават различно количество Слънчева енергия в зависимост от местоположението на Земята по нейната орбита. Второстепенна причина за наличието на сезони е ексцентричността на орбитата на Земята. Когато в Северното полукълбо е лято (и зима в Южното), разстоянието от Земята до Слънцето е по-голямо, отколкото разстоянието през зимата в Северното полукълбо (лято в Южното полукълбо) и съответно Земята получава по-голямо количество енергия. Този факт води до известно смекчаване на климата в Северното полукълбо.
Оста на въртене на Земята е подложена на прецесия с период от 25 800 години и нутация с период от 18,6 години. Тези движения са породени от сфероидната форма на Земята и ефектите, които оказват Слънцето и Луната.
Наблюдение от космоса
Земята е фотографирана от космоса за първи път през 1959 г. от Explorer 6.[22] През 1961 Юрий Гагарин става първият човек, който наблюдава Земята от космоса. Екипажът на Аполо 8 е първият, който наблюдава изгрев на Земята от лунна орбита през 1968 г. През 1972 г. екипажът на Аполо 17 прави известната фотография „Синьото топче“ на планетата Земя (виж началото на страницата).
Земята и Луната от Марс, снимка от Марс глобъл сървейър.
Естествени спътници
Основна статия: Луна
Земята има един сравнително голям естествен спътник – Луната, която прави една пълна обиколка около Земята за 27,3 дни. Наблюдавана от повърхността на Земята, Луната се придвижва спрямо звездите със скорост 12 градуса (или един лунен диаметър) на час в посока изток. Луната се отдалечава от Земята със скорост 4 cm на година.
ИмеДиаметър (km)Маса (kg)Голяма полуос (km)Орбитален период
Луна3474,87,349×1022384 40027 дни, 7 часа, 43,7 минути
Лунната гравитация е причината за приливите на Земята. Луната винаги показва една и съща страна по посока на Земята, но с различни осветени части.
Луната вероятно е повлияла благоприятно върху факторите за развитието на живота на Земята. Тя стабилизира земната ос и някои учени считат, че без нея наклонът ѝ би се изменял хаотично като този на Марс. В случай че земната ос стане успоредна на еклиптиката, то земният климат би се променил значително и най-вероятно би станал твърде неблагосклонен. Някои учени-планетолози считат, че този ефект би довел до изчезването на голям брой видове висши животни и растения.
Луната има почти същия ъглов диаметър като този на Слънцето поради факта, че тя е 400 пъти по-малка и се намира 400 пъти по-близо до Земята, отколкото Слънцето. Този факт позволява на Луната да затъмни Слънцето изцяло над определена част от повърхността на Земята. За сравнение, тази диаграма представя разстоянието между Земята и Луната и техните относителни размери:
Земята, Луната и разстоянието между тях
Известни са няколко коорбитални спътника на Земята (спътници на Слънцето, с орбити свързани със земната) – астероидите 3753 Круитни, (54509) 2000 PH5, (85770) 1998 UP1 и 2002 AA29.[23]
География
Основна статия: География
Физическа карта на Земята
Повърхността на Земята (510,073 млн. km²) главно се разделя на континенти, океани. 70,8% от нея (361,132 млн. km²) е вода, а 29,2% (148,94 млн. km²) – суша. Бреговите линии са 356 000 km. Континенталният шелф е с дълбочина между 140 до 550 m и ширина между 0 и 150 km.
Екстремални точки (спрямо морското равнище)
-
Най-ниска точка на повърхността: Мъртво море −392 m
-
Най-голяма дълбочина: Марианска падина в Тихия океан −11 022 m
-
Най-висока точка: Еверест 8848 m
Природни и климатични пояси
Основна статия: Климат
Климатична карта
Земята се разделя на седем вида биологични и климатични пояси. По-общо земният климат са характерни две обширни полярни зони, разделени от две сравнително тесни умерени зони, две тропични зони и една широка екваториална зона. Валежите варират в широки граници – от няколко метра до по-малко от милиметър годишно. Всички промени на времето стават в първите 10 km от атмосферата. Около една десета от Земята винаги е покрита с лед, а около една пета от сушата е пустиня.
Природа
Природни ресурси
Основна статия: Природни ресурси
-
Земната кора съдържа голямо количество залежи на изкопаеми горива като въглища и нефт, природен газ и метан. Човечеството използва тези ресурси за производство на енергия и като суровина за разнообразни химични продукти.
-
Метални руди: те са се формирали под въздействието на ерозията и тектоничната активност на Земята.
-
Земната биосфера произвежда много биологични продукти като храна, дървета, лекарствени средства, кислород, а също така рециклира много органични отпадъци.
Някои от природните ресурси като изкопаемите горива не могат да бъдат възстановени бързо по естествен път и поради това се наричат невъзобновяеми. Експлоатацията на невъзобновяемите ресурси от човешката цивилизация е плод на ожесточени дискусии между природозащитници и технократи.
Използване на сушата от човека
Използване на земятаВ проценти
Годна за култивация земя:13,13%
Постоянни насаждения:4,71%
Пасища:26%
Гори:32%
Населени места:1,5%
Други:30%
Земя снабдена с напоителни съоръжения: 2 481 250 km2 (по данни от 1993 г.)
Естествени бедствия
Обширни площи на Земята са подложени на природни бедствия като тропически циклони и антициклони, урагани (в Атлантическия океан) или тайфуни (в Тихия и Индийския океан. Много населени места са също подложени на опасности от земетресения, свлачища, вулканични изригвания, торнадота, пропадания на земна маса, наводнения или засушавания.
Много области и територии са обект на замърсяване на въздуха и водата от антропогенната дейност на човека, киселинни дъждове, загуба на естествената растителност (в резултат от занемаряване на земята, застрояване и урбанизиране), намаляване на видовото разнообразие, ерозия и изчерване на почвите.
Хората са причината и за глобалното затопляне, в следствие на емисиите въглероден диоксид. Това води до промени, като топенето на ледниците и снежните покривки, екстремално повишение на температурите, чувствителни промени в състоянието на водите и глобално повишение на нивото на водата.[24]
Проблеми на антропогенния фактор
В много области на Земята са наблюдава пренаселване, индустриални аварии, които водят до замърсяване на околната среда, киселинни дъждове, токсични отпадъци, загуба на растителност заради пасища, обезлесяване, запустяване, загуба на естествени животински и растителни видове, влошаване на плодородието на почвите или тяхната пълна или частична ерозия.
В дългосрочен план климатът на Земята е подложен на глобално затопляне поради изпускането на парникови газове като въглероден диоксид вследствие на индустриалната активност на човечеството. Друг вид газове като фреоните са причинители на частичното разрушаване на озоновия слой на атмосферата над Арктика и Антарктика.
Човешко население
Основни статии: Социално-икономическа география и Население на Земята
Земята през нощта – мозайка от сателитни снимки, заснети между октомври 1994 г. и март 1995 г.
Населението на Земята надхвърля 7 млрд. жители на 31 октомври 2011 г.[25] Прогнозите сочат, че населението на Земята ще достигне 9,2 млрд. през 2050 г.[26] По-голяма част от населението ще се увеличи в развиващите се държави.
Гъстотата в различните региони по света варира, но голяма част е концентрирана в Азия. През 2020 г. се очаква 60% от хората да живеят в градовете.[27] Изчислено е, че само 1/8 от територията на Земята е подходяща за живот, 3/4 е заета от световния океан, а половината от сушата е пустиня[28][29] или друг вид суша, която не е подходяща за живеене.
Най-северното селище в света е Алерт, остров Елсмер в Канада,[30] а най-южното – базата Амундсен-Скот на Южния полюс.
Първият човек, летял в орбита около Земята, е Юрий Гагарин(на 12 април 1961 г.)[31] Общо 487 души за излизали извън земната атмосфера към 30 юли 2010 г., от които дванадесет са стъпили на Луната.[32][33][34] В момента Международната космическа станция е единствената конструкция, която приютява хора в космоса. Екипажът на станцията е съставен от 6 члена и се сменя на всеки шест месеца.[35] Хора са се отделечавали максимално на 400 171 km от Земята по време на мисията Аполо 13 през 1970 г.[36]
Възрастова структура на населението на Земята:
-
0–14 години: 1 819 000 000 (29,9%)
-
мъже: 932 800 000 (15,4%)
-
жени: 886 000 000 (14,6%)
-
-
15–64 години: 3 841 000 000 (63,2%)
-
мъже: 1 942 000 000 (32,0%)
-
жени: 1 898 000 000 (31,2%)
-
-
65 и повече години: 419 100 000 (6,9%)
-
мъже: 184 100 000 (3,0%)
-
жени: 235 000 000 (3,9%) (по данни от 2000 г.)
-
Естествен прираст на населението: 1,14% (по данни от 2004 г.); 73 милиона на година (200 000 на ден); 1 на 32 000 на ден
Раждаемост: 22 раждания/1000 души (по данни от 2000 г.); 140 милиона на година; 1 на 17 000 на ден
Смъртност: 9 умирания/1000 души (по данни от 2000 г.); 60 милиона на година; 1 на 41 000 на ден
Съотношение между половете:
-
при раждане: 1,05 мъже/жени
-
под 15 години: 1,05 мъже/жени
-
15–64 години: 1,02 мъже/жени
-
65 и повече години: 0,78 мъже/жени
-
Общо за населението: 1,01 мъже/жени (по данни от 2000 г.)
Детска смъртност: 54 умирания/1000 живи раждания (по данни от 2000 г.)
Средна продължителност на живота
-
общо за населението: 64 години
-
мъже: 62 години
-
жени: 65 години (по данни от 2000 г.)
Плодовитост: 2,8 раждания/жена (по данни от 2000 г.)
Държавно управление
Залата на общото събрание на ООН
Към 2004 г. на Земята има 267 независими държави, под контрола на които се намира почти цялата територия на Земята без континента Антарктида. Събранието на Обединените нации е международна организация, която изпълнява преди всичко съвещателни функции и има ограничени възможности да гласува и следи за изпълнението на международните закони.
Представи и описания на Земята
Земята е била персонифицирана като богиня. (виж Гея и Майка Земя). Земята е била описвана и като голям космически кораб с животоподдържаща система, нуждаещ се от поддръжка[37] и с биосфера, която формира един цялостен огромен организъм.[38] (вижте Космическия кораб Земя).
Една снимка на Земята, направена от Вояджър 1, е вдъхновила Карл Сейгън да опише Земята като „бледа синя точка“.[39]
В научнофантастичната литература Земята често е столицата или административен център на галактическо управленско тяло (особено ако това тяло е доминирано от човекоподобни, често това са федерации, по-рядко империи или диктаторски режими. Типични примери са Стар Трек и Вавилон 5. В някои случаи хората на бъдещето са забравили от коя планета са дошли първоначално (Бойна звезда Галактика и поредицата за Фондацията).
„Пътеводител на галактическия стопаджия“ е „трилогия в пет части“ на Дъглас Адамс, която описва Земята като „почти безобидна“.
Бъдеще на Земята
Бъдещето на Земята е тясно свързано с това на Слънцето. Като резултат от натрупването на хелий в слънчевото ядро, светимостта на Слънцето бавно ще се увеличава. Тя ще се увеличи с около 10% в следващите 1,1 млрд. години и с 40% в следващите 3,5 млрд. години[40] Заради голямото количество радиация, което достига до повърхността на Земята, ще настъпят промени в климата и вероятно ще изчезнат океаните.[41]
Повишените температури на повърхността ще доведат до ускорение на неорганичния кръговрат на CO2 и съответно до редуцирането му до смъртоносни нива за растенията в следващите 500 до 900 млн. години. Даже и Слънцето да останеше стабилно, продължаващото охлаждане на Земята ще доведе до загубата на океаните и атмосферата (заради намаленото ниво на вулканизъм).[42] След още един милиард години водата на повърхността би изчезнала.[43] Очаква се Земята да е обитаема поне още 500 млн. години.[44]
Слънцето ще се превърне в червен гигант за около 5 млрд. години. Най-вероятно то ще завладее 90% от сегашното му разстояние от Земята (около 1 AU). Орбитата на Земята обаче може да се измени с 1,7 AU заради намалялата маса на Слънцето. По последни изследвания и симулации Земята ще бъде разрушена от приливните ефекти от навлизането ѝ в Слънчевата атмосфера.[
ЗЕМЯТА
Юпитер е петата по отдалеченост от Слънцето планета и най-голямата (с голяма преднина) в Слънчевата система. Юпитер и другите газови гиганти в Слънчевата система (Сатурн, Уран и Нептун) са известни още като юпитероподобни планети, планети-гиганти.
Юпитер е известен на човечеството още от древни времена, и присъства във вярванията и митологиите на много култури. Планетата е именувана от римляните и носи името на бог Юпитер от тяхната митология. В гръцката митология това е главният бог, гръмовержецът Зевс. Затова астрономическият символ е стилизирано изображение на светкавица. (♃) Погледнат от Земята, Юпитер има величина от -2,94, което го прави най-яркият обект на нощното небе след Луната и Венера.
Основната част от общата му маса е водород; една четвърт от масата му се състои от хелий. Наличието на ядро не е потвърдено, но е възможно скалисто такова да съществува и да е съставено от тежки елементи. Бързото въртене на планетата ѝ придава формата на сплеснат сфероид. Външната атмосфера е видимо разделена на различни пояси в зависимост от географската ширина и отдалечеността им от екватора, като в преходните области между поясите постоянно се образуват циклони и бури. Една такава буря е Голямото червено петно, огромен ураган, чието съществуване е регистрирано още при първите наблюдения на планетата през 17 век. Планетата има почти незабележим пръстен от прахови частици, както и изключително мощна магнитосфера. Засега са регистрирани 63 луни, от които най-голямата — Ганимед, е с по-голям диаметър от Меркурий. Ганимед е един от четирите т.нар. Галилееви спътници, открити от астронома Галилео Галилей през 1610 година.
Юпитер е бил обект на изследвания от няколко непилотирани космически апарата, а част от големите му луни, например Европа, представляват интерес за астрономите поради вероятностите под повърхността им да има лед.
Съдържание
-
1 Общ преглед
-
2 Физически характеристики
-
2.1 Състав
-
2.2 Атмосфера
-
2.3 Вътрешна структура
-
2.4 Пръстени
-
2.5 Магнитосфера
-
2.6 Орбита и въртене
-
-
3 Изследване на Юпитер
-
3.1 Програма Пионер
-
3.2 Програма Вояджър
-
3.3 Галилео
-
3.4 Касини-Хюйгенс
-
3.5 Нови Хоризонти
-
3.6 Бъдещи мисии
-
-
4 Спътниците на Юпитер
-
4.1 Галилеевите луни
-
4.2 Класификация на спътниците на Юпитер
-
-
5 Сблъсъци с комети
-
6 Юпитер в киното и фантастиката
-
7 Източници
-
8 Външни препратки
Общ преглед
Юпитер е 2,5 пъти по-масивен от всички останали планети в Слънчевата система взети заедно — толкова масивен, че барицентърът му със Слънцето лежи над повърхността на Слънцето (на 1,068 слънчеви радиуса от центъра на звездата). Юпитер е 318 пъти по-масивен от Земята, има диаметър 11 пъти по-голям от земния и обемът му е 1300 пъти повече от земния. Понякога бива наричан „неуспяла звезда“, но със същия успех някой астероид може да бъде наречен „неуспяла планета“. Въпреки размерите му, извън Слънчевата система са открити планети дори с още по-голяма маса. Счита се, че Юпитер има максималните размери, които едно „студено тяло“ (в чието ядро не протичат термоядрени реакции) може да достигне. Ако планетата е по-масивна, то нейните размери ще намалеят поради увеличената ѝ плътност и ако тя стане достатъчно масивна (около 70-75 маси на Юпитер) във вътрешността ѝ ще започнат да протичат термоядрени реакции и планетата ще се превърне в звезда. Границата между планета и най-малките известни звезди — кафяви джуджета не е ясно изразена, въпреки особените спектрални линии на последните.
Юпитер се върти най-бързо от всички планети в Слънчевата система, в резултат на което полюсите ѝ са видимо сплеснати. Най-известната забележителност на повърхността ѝ е Голямото червено петно, антициклонална буря с размери, по-големи от тези на Земята. Юпитер е постоянно покрит с плътен облачен слой.
Юпитер обикновено е четвърти по яркост обект в небето след Слънцето, Луната и Венера; понякога обаче Марс е по-ярък, докато на моменти Юпитер е по-ярък от Венера. Юпитер е бил известен от древността. Галилео Галилей през 1610 г. открива четирите му най-големи спътника, наречени в негова чест галилееви луни.Те са: Йо, Европа, Ганимед и Калисто. Откритието на Галилей е първото наблюдавано движение на небесни тела не около Земята (която тогава се е считала за център на Вселената — виж геоцентрична система), а около друго небесно тяло. Това е важно доказателство против геоцентричната система. Публичното одобрение на Галилео за хелиоцентричната система на Николай Коперник го въвлича в списъка на заподозрените в разпространението на ереси от Светата инквизиция.
Юпитер може да се наблюдава отлично при безоблачна нощ с бинокъл или малък телескоп. Непосредствено видими са четирите галилееви луни, когато не са скрити от диска на планетата. При 20-30 пъти увеличение облачните пояси на Юпитер стават видими. За наблюдението на Голямото червено петно обаче е необходимо по-голямо увеличение.
Физически характеристики
Състав
Юпитер има сравнително малко скално ядро, заобиколено от слоеве (от вътре навън) метален водород, течен водород и газообразен водород. Преходите между слоевете са плавни.
Юпитер не се върти като твърдо тяло. Спрямо главния меридиан на Юпитер, екваториалната зона извършва пълно завъртане средно всеки 9 часа 50 минути и 30,003 секунди (по дефиниция средната скорост на въртене е 877,90°/ден), известна още като Система I.
Система II включва всички ширини без Система I. Всички елементи от повърхността на планетата в тези райони (в това число и Голямото червено петно) извършват едно завъртане средно всеки 9 часа 55 минути и 40,632 секунди (по дефиниция 870,27°/ден).
Атмосфера
Близък план на атмосферата на Юпитер заснет от Вояджър 1. Голямото червено петно е видимо в горния десен ъгъл.
Атмосферата на Юпитер се състои от приблизително 86% водород и 14% хелий по брой атоми и 75% водород, 24% хелий и 1% други примеси по маса. Атмосферата съдържа следи от метан, водна пара, амоняк и скални примеси както и минимални количества въглерод, етан, сероводород, неон, кислород, фосфин и сяра. Най-външният слой на атмосферата съдържа кристали замръзнал амоняк.
Атмосферното съдържание е много близо до първичната слънчева мъглявина. Сатурн има подобен състав, но Уран и Нептун имат много по-малко водород и хелий.
За горните слоеве на атмосферата на Юпитер е характерно диференциално въртене, ефект за първи път забелязан от Джовани Доменико Касини през 1690 г. Едно пълно завъртане на атмосферата в полярните зони е с около 5 минути по-дълго от това в екваториалните зони. Също така облачните пояси на Юпитер на различни височини се придвижват в различни посоки в зависимост от преобладаващите ветрове. Взаимодействията между тези циркулационни пояси пораждат бури и различни видове турбулентност, като скоростта на ветровете достига до 600 km/h. Голямото червено петно е особено интензивна буря.
Единственият досега космически апарат, директно изследвал атмосферата на Юпитер, е спускаемият модул на Галилео (виж тук).
Вътрешна структура
Предполага се, че Юпитер се състои от ядро с голяма плътност, съставено от смес на различни елементи; то е обгърнато от слой течен метален водород, примесен с хелий, и външен слой, състоящ се предимно от молекулярен водород.[1] Тази характеристика е съвсем обща, и все още има голям брой неясноти около пластовете на планетата. Ядрото често бива смятано за скалисто, но подробна информация за състава му все още не е известна, нито пък са известни свойствата на веществата при огромната температура и налягане на тези дълбочини. Съществуването на твърдо ядро е предположено през 1997 година след гравитационни измервания,[1] посочващи маса 12-45 пъти масата на Земята или около 3% - 15% от общата маса на Юпитер.[2] [3] Наличието на ядро поне в даден период от историята на планетата е дадено като вероятност от моделите на планетарно формиране, включващи първоначално образуване на скалисто или заледено ядро, което е достатъчно масивно, за да събира водород и хелий от протопланетарният диск. Ако се приеме, че е съществувало, то може да се е свило в резултат на конвекция и съставът му да е бил пренесен от теченията към по-високите слоеве на планетата. Възможно е вече изобщо да не съществува ядро, тъй като настоящите данни не са достатъчно точни, за да бъде напълно изключено това предположение.[1][4]
Модел на предполагаемата вътрешна структура на Юпитер
Несигурността на моделите е свързана с вероятност за грешка в следните параметри: един от коефициентите на въртене (J6), използван за определяне на гравитационния момент на планетата, екваториалният радиус и температурата при налягане от 1 бар. Очаква се мисията JUNO, чието начало е предвидено за 2011 г., да ограничи стойността на тези параметри, и по този начин да се реши, или най-малкото да се постигне напредък по проблема с ядрото.[5]
Центърът на планетата е заобиколен от наситен метален водород с огромен обем, заемащ около 78 на сто от радиуса на Юпитер.[2] Подобно на дъжд, капчици от хелий и неон се утаяват надолу през този слой, като по този начин изобилието на тези елементи в горната атмосфера намалява.[6]
Над този слой метален водород се намира прозрачна вътрешна атмосфера от водород както в течно, така и в газообразно състояние. Газообразната част се простира на дълбочина от около 1000 km под облачния слой.[2] Вместо ясна граница между тези различни агрегатни състояния на водорода най-вероятно присъства плавна градация от газ към течност с увеличаване на дълбочината.[7][8]
Температурата и налягането на Юпитер нарастват стабилно с увеличаването на дълбочината. В областта на преходния етап между нормален и метален водород се смята, температурата е 10 000 К, а налягането е 200 GPa. Температурата в центъра на планетата се изчислява на 36 000 К, а вътрешното налягане е около 3,000-4,500 GPa.[2]
Пръстени
Основна статия: Пръстени на Юпитер
Юпитер има бледи пръстени, съставени от прахообразни частици попаднали в орбита вследствие на сблъсъци на метеорити с нейните спътници.
Пръстените се разделят на 4 основни компонента: тънък вътрешен слой, известен като „ореол“; относително ярък и изключително тънък „основен пръстен“ и два широки и дебели външни „газови пръстени“, кръстени на луните, от чийто материал са съставени: Амалтея и Тива.[9] Основният пръстен и „ореолът“ са съставени от прах, изхвърлен при сблъсъците с висока скорост на метеорити с луните Метис, Адрастея и други небесни тела. Снимките с висока разделителна способност, получени от New Horizons през февруари и март 2007 разкриват допълнителна информация за структурата на основния пръстен.[10]
Съществува и още един изключително тънък и отдалечен пръстен с ретроградно движение, за който се предполага, че е прихванат междупланетен прах.
Магнитосфера
Юпитер има голяма и мощна магнитосфера — ако тя се виждаше с просто око от Земята, би изглеждала пет пъти по-голяма от диска на Луната. Магнитното поле прихваща множество частици в радиационните пояси на планетата и струи газ изригващ от Йо в тороидна орбита около Юпитер. Магнитосферата на планетата е най-голямата структура в Слънчевата система.
Апаратите от мисията Пионер показват, че магнитното поле на Юпитер е 10 пъти по-мощно от земното и съдържа 20 000 пъти повече енергия. Бордните инструменти показват, че северния магнитен полюс почти съвпада с южния географски полюс на планетата с отклонение от 11 градуса и отместен от геометричния център по начин подобен на земното магнитно поле. Апаратите регистрират ударна вълна на разстояние от 26 милиона километра от Юпитер и магнитна опашка, простираща се отвъд орбитата на Сатурн.
Данните от измерванията показват, че ширината на магнитното поле откъм слънчевата страна на Юпитер е нестабилна и варира според интензивността на слънчевия вятър. Част от особено интензивните частици, откъснали се от магнитосферата на планетата, могат да достигнат чак до земната орбита. Регистрирани са високоенергийни протони в радиационния пояс на Юпитер и е установено наличието на електрически токове между Юпитер, Йо и някои други спътници.
Орбита и въртене
Средното разстояние между Юпитер и Слънцето е 778 000 000 km (около 5,2 пъти повече от средното разстояние между Земята и Слънцето, или 5,2 AU), като планетата завършва една пълна орбита около звездата за 11,86 години.
Наклонът на оста на Юпитер е относително малък: само 3,13 °. В резултат на това на планетата не присъстват значителните сезонни промени, характерни за Земята и Марс например.[11]
Юпитер също така демонстрира най-бързото въртене от всички планети на Слънчевата система, осъществявайки едно завъртане около оста си за малко по-малко от десет часа. Това създава екваториална издутина, лесно забележима от Земята дори с любителски телескоп. В резултат на това екваториалният диаметър е с 9 275 km по-дълъг от полярния.
Изследване на Юпитер
Юпитер е известен още от древността поради високата си яркост. През 1610 г. Галилео Галилей открива четирите най-големи спътника, използвайки саморъчно направения си телескоп.
Юпитер е изследван от няколко апарата:
Програма Пионер
Пионер 10 се сближава с Юпитер през декември 1973 г., последван от Пионер 11 точно една година по-късно. Предадени са данни за магнитосферата на планетата и снимки с ниска разделителна способност. Пионер 10 прелита на 132 000 km над облаците на Юпитер получава данни за състава на атмосферата, уточнява масата на планетата и плътността на 4-те най-големи спътника, измерва нейното магнитно поле. Установява, че общият топлинен поток отделян от Юпитер превишава 2,5 пъти енергията, която планетата получава от Слънцето.
Програма Вояджър
Снимка, направена от Вояджър 1 на 24 януари 1979 г. от повече от 40 милиона километра разстояние.
Вояджър 1 се сближава с Юпитер през март 1979 г., последван от Вояджър 2 през юли същата година. Двата апарата предават изключително ценна информация за галилеевите луни, откриват пръстените на Юпитер и правят близки снимки на атмосферата на планетата.
Галилео
Апаратът „Галилео“ влиза в орбита около Юпитер през 1995 г. и спуска малка атмосферна сонда през юли същата година. Сондата навлиза на 150 km в атмосферата на планетата и събира данни в продължение на 58 минути, преди да бъде смачкана от налягането ѝ. Основният апарат продължава да изследва планетата и галилеевите луни до 21 септември 2003 г., когато по план е спуснат в атмосферата на Юпитер със скорост от 50 km/s. Това действие е предприето с цел да се избегне каквато и да е възможност апаратът да се разбие на повърхността на някоя от галилеевите луни и евентуално да я зарази със земни микроби.
Апаратът наблюдава отблизо сблъсъка на кометата Шумейкър-Леви 9 с Юпитер през 1994 г.
Касини-Хюйгенс
През 2000 г. апаратът Касини-Хюйгенс посещава Юпитер на път за Сатурн и предава най-детайлните снимки, правени някога на планетата. Апаратът се сближава максимално с Юпитер на 30 декември 2000 г. и провежда многобройни измервания. Около 26 хиляди снимки биват заснети в продължение на един месец. Те биват използвани за създаването на общата снимка на Юпитер с най-голяма разделителна способност — около 60 km/пиксел.
Едно от основните открития, оповестено на 6 март 2003 г. ([2]), се отнася до атмосферната циркулация на планетата. В атмосферата на Юпитер се наблюдават тъмни пояси, които се редуват със светли зони. В миналото за светлите зони, съдържащи облаци, се е смятало, че съдържат възходящи конвекционни потоци, подобно на земните атмосферни явления. Анализ на снимките, изпратени от Касини, обаче показва, че в тъмните пояси се издигат бели облаци, които са твърде бледи, за да бъдат наблюдавани от Земята. Така учените заключават, че потокът на конвекцията в тъмните пояси е възходящ, а в светлите зони — низходящ.
Други наблюдавани атмосферни явления включват тъмен облак с големина приблизително колкото Голямото червено петно в близост до северния полюс на планетата. При инфрачервени наблюдения са разкрити и пояси на атмосферна циркулация на ширини близо до полюсите.
При наблюдения на отразената от пръстените на Юпитер светлина е установено, че изграждащите ги частици са с неправилна форма и най-вероятно са породени от микрометеоритни сблъсъци на повърхностите на някои от спътниците на Юпитер, като Метис и Адрастея.
Нови Хоризонти
През 2007 г. Юпитер беше посетен за кратко от мисията „Нови Хоризонти“, чиято основна цел е да изследва Плутон и обектите от пояса на Кайпер. „Нови хоризонти“ направи снимки на Европа, Йо и Малкото червено петно на Юпитер и освен това изследва магнитната опашка на планетата.
Бъдещи мисии
МисияИзстрелванеПристигане на ЮпитерСтатутТип мисияБележки
Джуно20102016В разработкаОрбитален апарат
Europa Geophysical Explorer2015Концептуална мисияОрбитален апаратЩе изследва геологията на Европа и ще търси места за приземяване на бъдещи апарати
Облитане на Юпитер със сонди2020Концептуална мисияОблитанеВъзможно е да отпадне, тъй като и Джуно би могъл да извърши нужните изследвания
Europa Astrobiology Lander2035 (най-рано)Концептуална мисияСпускаем апарат
Спътниците на Юпитер
Основна статия: Естествени спътници на Юпитер
Четирите галилееви луни на Юпитер: монтаж със запазени относителни размери (голямото червено петно също е видимо). От горе надолу: Ганимед, Калисто, Европа и Йо
За Юпитер се знае че, има поне 63 естествени спътника. От тях 47 са с диаметър по-малък от 10 km и са открити след 1975 г. За хронология на техните откривания вижте хронология на естествени спътници.